
Internal Auditing & Risk Management Year XVI, No 1(61) March 2021

9

DOI: 10.5281/zenodo.4644565

OPTIMIZATION OF APPLICATION OBJECTS USED IN
THE ECONOMIC ENVIRONMENTS

Emilia VASILE, PhD Professor
Athenaeum University, Bucharest, Romania

rector@univath.ro

Dănuţ-Octavian SIMION, PhD Associate Professor
Athenaeum University, Bucharest, Romania

danut_so@yahoo.com

Abstract: The paper presents the Optimization of application objects used in
the economic environments. The dynamic character of the economic system
necessarily determines a dynamic character of the economic information
system. Initially, variations in the behavior of the economic system may
be disruptive to the information system, but due to its existence as a cyber
system, the information system can adapt and function in full accordance
with the economic system. A part of the phases of the informational process
(for example the collection of data from the primary evidence) is performed
within the operational (managed) subsystem of the economic system. It can
be appreciated that the subsystem in which the information process takes
place together with a part of the operational subsystem forms the managed
subsystem of the cybernetic information system. The character of the cyber
system is strengthened by the fact that the economic information system has its
own objectives, methods, techniques and resources. At the level of the economic
information system, at least two interdependent subsystems can be identified,
which ensure the stability of the entire system: the managerial information
subsystem and the operational information subsystem. There are many types of
data in the economical environment such as simple chained lists that offer a lot
of flexibility in storing data. Using these types of data permits the optimization
of economical flows designed for economical applications that are implemented
in organizations that invests in flexible and scalable information systems.
Keywords: economic system, simple chained lists, economical data, information
processes, business flows, application modules, analysis of data.	
JEL Classification: C23, C26, C38, C55, C81, C87

Internal Auditing & Risk Management Year XVI, No 1(61) March 2021

10

1. Introduction

An organization must maintain appropriate relationships with other economic,
political, and social systems in its environment. The systems group includes
several factors such as customers, suppliers, competitors, shareholders, trade
unions, financial institutions, government agencies and communities, each
with its own objectives relative to the organization concerned. Information
systems are those that facilitate the interaction between the organization seen
as a system and each of the factors listed.

On the other hand, considering the definition of a cybernetic system
(characterized by the existence of at least two subsystems between which there
is self-regulation by reverse connection) and analyzing this for the economic
information system we can see that it has a cybernetic character. Seen as a
system, any organization comprises six interdependent system components:
Input - economic resources such as human, financial, material, machinery,
land, facilities, energy and information, which are taken from its environment
and used in system activities.

Transformation function - organizational processes such as research,
development, production, marketing, sales, which transform input into output.

Output - the results of the transformation function, which consist of
products and services, payments of employees and suppliers, dividends,
contributions, taxes and information to the external system (environment).

Feedback - is the defining element of a cybernetic system, which
provides the function of self-regulation, when the output does not correspond
to the objectives set (Z) within the system represented by the economic
organization (Sandner and Vukics, 2020; Orszag, 2020).

Control - management is the control component of an organizational
system, which aims at the functions of the enterprise so that the performance of
the system reaches the organizational objectives (such as profitability, market
share or social responsibility).

Environment - any economic organization is an open, adaptable system
that shares input and output elements with other systems in its environment
(Sanderson, 2019; Steeb and Solms, 2021).

2. The simple chained lists used to store and model data in applications

Simply chained lists are homogeneous dynamic data structures. Unlike
massive ones, lists are not allocated as homogeneous blocks of memory, but
as separate elements of memory. Each node of the list contains, apart from the
useful information, the address of the next element. This organization allows
only sequential access to list items.

Internal Auditing & Risk Management Year XVI, No 1(61) March 2021

11

To access the list you must know the address of the first element (called
the head of the list); the following items are accessed by scrolling through the
list (Reddy, 2020; Grant ,2021).

List structure - In order to ensure a greater degree of generality to the
list, an alias was created for the useful data (in our case an integer):

	 // Data associated with a
	 // item in a list
	 typedef int Date

If you want to store another type of data, you only need to change the
declaration of the alias Data.

A self-referenced structure is used to store the list. This structure will
take the form of:

	 // The structure of an element
	 // from a simply chained list
	 struct Element
	 {
	 // the actual data stored
	 Value data;
	 // link to the next node
	 Next item *;
	 };

If the element is the last in the list, the next pointer will have the value NULL.
The declaration of the list is made in the form:

	 // declare life list
	 Element * cap = NULL;

List operations - The main operations with lists are:
Browse and display the list
The list is traversed starting from the pointer to the first element and advanc-
ing using the pointers in the structure to the end of the list (pointer NULL).

// Scroll and display the simple list
void Display (Item * cap)
{
 // as long as we have elements
 // in the list
 while (cap! = NULL)
 {
 // displays the current item
 cout << cap-> value << endl;

Internal Auditing & Risk Management Year XVI, No 1(61) March 2021

12

 // advance to the next item
 cap = cap-> next;
 }
}

Insert item - Inserting an item can be done at the beginning or end of the list.

a) Insertion at the beginning
This is the simplest case: you just need to allocate the item, related to

the first item in the list and reposition the head of the list:

// Insert element at the beginning of a
// simply chained lists
void InsertStart (Item * & cap, Wave data)
{
 // Node allocation and value initialization
 Element * elem = new Element;
 element-> value = wave;

 // link node in list
 elem-> next = head;

 // move the head of the list
 cap = elem;
}

b) Insertion at the end of the list
In this case you must first go through the list and then add the item and

link to the rest of the list. Also, the case if the list is empty must be considered.

// Insert element at the end of a
// simply chained lists
void InsertEnd (Item * & head, Wave data)
{
 // Node allocation and initialization
 Element * elem = new Element;
 element-> value = wave;
 elem-> next = NULL;

 // if we have a live list
 if (cap == NULL)
 // just change the head of the list
 cap = elem;
 else
 {
 // scroll through the list to the last node
 Element * node = head;
 while (nod-> next! = NULL)
 nod = nod-> next;

Internal Auditing & Risk Management Year XVI, No 1(61) March 2021

13

 // add the new item to the list
 nod-> next = element;
 }
}

c) inserare dupa un element dat

void InsertInterior (Element * & cap, Element * p, Date wave)
{
 // Node allocation and initialization
 Element * elem = new Element;
 element-> value = wave;
 elem-> next = NULL;

 // life list
 if (cap == NULL)
 {
 cap = elem;
 return;
 }

 // insert at the top of the list
 if (cap == p)
 {
 elem-> next = head;
 cap = elem;
 return;
 }

 // insert inside
 elem-> next = p-> next;
 p-> next = item;
}

Item search - Searching for an item in a list involves going through the list to
identify the node according to a criterion. The most common criteria are those
related to the position in the list and the useful information contained in the node.
The result of the operation is the address of the first element found or NULL.

a) Search by position
Advance the pointer with the specified number of positions:

// Search for item by position
Item * SearchPosition (Item * head, int position)
{
 int i = 0; // current position

 // scroll through the list to
 // required position or up to

Internal Auditing & Risk Management Year XVI, No 1(61) March 2021

14

 // end of list
 while (cap! = NULL && i <position)
 {
 cap = cap-> next;
 i ++;
 }

 // if the list contains the item
 if (i == position)
 return cap;
 else
 return NULL;
}

b) Search by value
The list is scrolled until it is exhausted or the element is identified:

// Search for item by value
Item * SearchValue (Item * head, Wave data)
{
 // scroll through the list until you find it
 // item or list exhaustion
 while (cap! = NULL && cap-> value! = wave)
 cap = cap-> next;

 return cap;
}

Delete item

a) Deleting an item from the list (other than the list head)
In this case we need the address of the predecessor of the element to be

deleted. The connections in the sense of short-circuiting the deleting element
are modified, after which the memory corresponding to the deleting element
is released:

// delete an item from the list
// receiving as a parameter the address of the predecessor
void DeleteElementInterior (Predecessor Element *)
{
 // save the reference to the delete element
 Element * deSters = predecessor-> next;

 // short-circuit the element
 predecessor-> next = predecessor-> next-> next;

 // and delete it
 delete deSters;
}

Internal Auditing & Risk Management Year XVI, No 1(61) March 2021

15

b) Deleting an item from a certain position
If the item is the first in the list, then the head of the list is modified,

otherwise the item is searched and deleted using the previously defined
function:

void Delete Position (Item * & head, int position)
{
 // if the list is empty we don’t do anything
 if (cap == NULL)
 return;

 // if it is the first element, then
 // wipe it and move the head
 if (position == 0)
 {
 Element * deSters = none;
 cap = cap-> next;
 delete deSters;
 return;
 }

 // if it’s inside, then we use
 // delete function
 Element * predecessor = SearchPosition (head, position-1);
 DeleteElementInterior (predecessor);
}

c) deletion after a value
Search for the element’s predecessor and use the element deletion

function:

void DeleteValue (Item * & cap, Date wave)
{
 // if the list is empty we don’t do anything
 if (cap == NULL)
 return;

 // if it is the first element, then
 // wipe it and move the head
 if (head-> value == wave)
 {
 Element * deSters = none;
 cap = cap-> next;
 delete deSters;
 return;
 }

 // looking for the predecessor
 Element * elem = none;
 while (element-> next! = NULL && element-> next-> value! =

Internal Auditing & Risk Management Year XVI, No 1(61) March 2021

16

wave)
 elem = elem-> next;

 // if it was found, then we delete it
 if (elem-> next! = NULL)
 DeleteElementInterior (elem);
}

3. Methods of implementation for stored data

Queues and stacks are logical data structures (implementation is done using
other data structures) and homogeneous (all elements are of the same type).
Both structures have two basic operations: adding and removing an element.
Apart from these operations, other useful operations can be implemented:
vacuum structure test, obtaining the first element without extracting it (Sandner
and Vukics, 2020; Steeb, 2021). The fundamental difference between the two
structures is the access discipline. The stack uses a LIFO (Last In First Out)
access discipline, and the queue uses a FIFO (First In First Out) discipline (Del
Nero, 2020; Chand, 2020).

Stacks and tails can be implemented in several ways. The most used
implementations are those using massive and lists. Both approaches have
advantages and disadvantages.

To implement a stack using massive we need a massive V of size n
to store the elements. The last element of the mass will be used to store the
number of elements of the stack (Reddy, 2020; Steeb, 2021).

If the stack is empty, then the element Vn-1 will have the value 0. Using
this representation, the basic operations can be implemented in constant time.

The algorithms for implementing basic operations (in pseudocode) are:

add (elem, V, n)
if v [n-1] = n-1 // check if the stack is not full
 return “full stack”
v [v [n-1]] = element // we add the element in bulk
v [n-1] = v [n-1] + 1 // we increase the number of elements
return “success”

 delete (V, n)
if v [n-1] = 0 // check if the stack is not empty
 return “empty stack”
elem = v [v [n-1] - 1] // extract the element from the massif
v [n-1] = v [n-1] + 1 // we decrease the number of elements
return elem

The queue can be implemented using a circular vector of size n (element
n-4 is followed by element 0). The last two elements contain the start and end

Internal Auditing & Risk Management Year XVI, No 1(61) March 2021

17

indices of the queue, and the penultimate element is a marking used to be able
to differentiate between empty tail and full tail cases.

The algorithms that implement the basic operations for a queue stored
in the presented form are:

add (elem, V, n)
v [n-2] = (v [n-2] + 1) mode (n-2) // move the tail head
if v [n-1] = v [n-2] // check full queue
 return “full queue”
V [V [n-1]] = element // we add the element
return “success”

delete (V, n)
if v [n-1] = v [n-2] // empty queue check
 return “empty tail”
v [n-1] = (v [n-1] + 1) mode (n-2) // move the end index
return V [V [n-1]] // return the element

The second way to implement stacks and queues is to use dynamically
allocated lists.

In the case of the stack, we will use a simple chained list organized as
in the following:

Each node consists of useful information and a link to the next item.
The type of information stored in the stack is indicated by the user by defining
the TipStiva type. The empty stack is represented by a null pointer. Items are
added before the first item (by moving the top of the stack). The extraction is
also done from the top of the stack (Sandner and Vukics, 2020; Grant ,2021).

The source code for the library that implements the operations on the
dynamically allocated stack is:
// An element from the stack
struct NodStiva
{
 TipStiva Date; // user defined type
 NodStiva * Next; // link to the next item

 // constructor for initializing a node
 NodStiva (TypeStiva data, NodStiva * next = NULL):
 Date (s), Next (next) {}
};

// The stack is stored as a
// pointer to the first element
typedef NodStiva * Stiva;

// Create the stiva life
StCreare stack ()
{
 return NULL;
}

Internal Auditing & Risk Management Year XVI, No 1(61) March 2021

18

// Check if a stack is empty
bool StEGoala (Hold & hold)
{
 return stack == NULL;
}

// Add an item to the stack
void StAdauga (Hold & Stack, DateStype Tip)
{
 stiva = new NodStiva (date, stiva);
}

// Returns a copy of the top of the stack
TipStave StVarf (Hold & hold)
{
 // Case 1: stiva vida
 if (StEGoala (stack)) // if the stack is empty, then
 return ActivateType (); // return the default value for the
stack type

 // Case 2: empty stack
 return stack-> Date; // turn the top of the stack
}

// Extract the element from the top of the stack
StExtrage Hold (Hold & Hold)
{
 // Case 1: stiva vida
 if (StEGoala (stack)) // if the stack is empty, then
 return ActivateType (); // return the default value for the
stack type

 // Case 2: empty stack
 NodStiva * nodDeSters = hold; // save a reference to the de-
lete node
 TypeStop Res = Stack-> Date; // save the data to be returned

 stiva = stiva-> Next; // we advance to the top of the list

 delete nodDeSters; // delete the delete node

 return rez; // return the results
}

Achieving good economic efficiency by enterprises is conditioned by

the existence of scientific leadership based on a good knowledge of economic
laws, operational and accurate knowledge of supply and demand in the internal
and external market, the dynamics of commodity prices, technological trends
and how use of the resources at their disposal (Reddy 2020; Orszag 2020).

Internal Auditing & Risk Management Year XVI, No 1(61) March 2021

19

4. Conclusions

Starting from the fact that, on the one hand, mathematical models represent the
scientific component of an information system, and on the other hand, taking
into account the facilities offered by the use of information and communication
technology (ICT) as a component of the information system, it trace is a real
tool in the scientific management of economic activity (Steeb and Solms,
2021); Grant, 2021). There are some of the arguments put forward in favor of
the management of economic organizations using information systems such as
offering the possibility to simulate economic processes and phenomena both at
microeconomic level and at macroeconomic level. Mathematical models can be
developed and implemented regarding the forecast of economic development,
different plan variants can be elaborated and then the optimal variant can be
chosen (Sanderson, 2019; Steeb and Solms, 2021). At the microeconomic
level, with the help of SI the available resources are harmoniously correlated
with the proposed objectives, ex: planning of overhauls and capital repairs,
scheduling scheduling and production tracking, inventory management. The
efficient way to store data in stacks, lists or queues offers many advantages and
flexibility for the business logic in applications.

References

Grant, R. 2021. An interface between Stata and C++, with big data and machine-
learning applications; ideas.repec.org.

Orszag, J.M. 2020. Fortran, C and C++ Code for Econometrics and Optimisation
Applications. Oxford University Press.

Reddy, M. 2020. API design for C++. Elsevier; books.google.ro.
Sanderson, C. 2019. An Open Source C++ Linear Algebra Library for Fast Prototyping

and Computationally Intensive Experiments; www.researchgate.net.
Sandner, R., Vukics, A. 2020. C++QEDv2 Milestone 10: A C++/Python application-

programming framework for simulating open quantum dynamics. Computer
Physics Communications, 185(9), pp. 2380-2382. Available at: https://www.
sciencedirect.com/science/article/abs/pii/S0010465514001349?via%3Dihub.

Steeb,W-H., Solms, F. 2021. Applications Of C++ Programming Administration,
Finance and Statistics; https://ideas.repec.org/b/wsi/wsbook/2798.html.

