
Internal Auditing & Risk Management Year XV, No 4(60) December 2020

9

DOI: 10.5281/zenodo.4383022

POLYMORPHISM OF CLASSES AND REFERENCE
OF INSTANCES DISTRIBUTION FOR

ECONOMIC OBJECTS IN APPLICATIONS

Emilia VASILE, PhD Professor
Athenaeum University, Bucharest, Romania

rector@univath.ro

Dănuţ-Octavian SIMION, PhD Associate Professor
Athenaeum University, Bucharest, Romania

danut_so@yahoo.com

Abstract: The paper presents the polymorphism of classes and reference of
instances distribution for economic objects in applications. Data stored in
a database is persistent data, ie data that remains stored on magnetic media,
independent of the execution of application programs. Persistent database data
is entered, deleted, or updated using input data (from the keyboard, from reading
data files, or from receiving messages). Input data is generally non-persistent
data; they are generated by users and are stored (becoming persistent data)
only after they have been validated (accepted) by the DBMS. The output data of
a database system is also non-persistent data; they come from database query
operations and are made available to the user (in the form of impressions, printed
reports, etc.). The correspondent model for database tables and entities are
classes that encapsulate properties and methods. Data - acts as a bridge between
machine components (hardware and software) and the human component. The
database contains both operational data (the set of records being worked on) and
metadata. Polymorphism can obtain new objects derived from existing classes
that map custom business logic which includes specific economic operations.
The data model is defined as a set of concepts used in the description of the data
structure. The structure of the database means the type of data, the connection
between them, the restrictions applied to the data.
Keywords: polymorphism, specific classes, economical data, derived classes,
business flows, application modules, analysis of data	
Coduri JEL: C23, C26, C38, C55, C81, C87

Internal Auditing & Risk Management Year XV, No 4(60) December 2020

10

1. Introduction

An external schema or user’s view contains a conceptual sub-schema of the
database, specifically the description of the data that is used by that group of
users. The conceptual schema of the database (conceptual schema) corresponds
to a unique (for all users) and abstract representation of the data, describing
what data is stored in the database and what are the associations between them.
The internal or physical schema of the database (internal schema) specifies how
the data is represented on the physical medium. A database system supports an
internal schema, a conceptual schema, and several external schemas; all these
schemes are different descriptions of the same data collection, which exists
only internally.

The external level or the visual level (user), includes a collection of
external schemes, which are views of the different groups of users, there being
an individual view of the data for each group;

The conceptual level - or conceptual (logical) schema of the database,
describes the structure of the entire database for all users. At the conceptual
level, a complete description of the database is made, hiding the details related
to the physical storage and detailing the description of the entities, the types of
data, the relations between them and the associated restrictions;

The internal layer contains the internal schema that describes the
structure of physical data storage in the database, using a model of physical
data. This level describes the full details of the storage and how to access the
data (Del Nero, 2020; Campbell, 2020).

In many DBMSs a clear distinction cannot be made between the three
levels, often the conceptual level is strongly developed and apparently replaces
the other levels. Also, when developing applications, there is a fusion of the
external level with the conceptual one.

2. The operator reference and instance distribution

The expression to throw a <reference> from <source type> to <destination
type> has the following syntax:

(<destination type>) <reference>

A distributed expression checks whether the object’s reference value
denoted by <reference> is attributable to a reference of type <destination>,
ie that <source type> is compatible with <destination type>. If not, a

Internal Auditing & Risk Management Year XV, No 4(60) December 2020

11

ClassCastException is thrown. The null reference value can be assigned to any
type of reference. The binary instance operator has the following syntax:

<reference> instanceof <destination type>

The instanceof operator returns true if the left operand (<reference>)
can be thrown to the right operand (<destination type>), but always returns
false if the left operand is null. If the instanof operator returns true, then the
corresponding distribution expression will always be valid. Both distribution
and court operators require a compile-time check and a run-time check, as
explained below.

Compile-time verification determines whether a <source> reference
and a <destination> reference can indicate reference-type objects that are a
common subtype of both <source> and <destination> type in the type hierarchy.
If that is not the case, then obviously there is no relationship between the types
and neither the distribution nor the application of the court operator would be
valid. When running, it is the type of real object denoted by the <reference>
that determines the result of the operation.

With <source type> and <destination type> as Product and String
classes, respectively, there is no subtype-supertype relationship between
<source type> and <destination type>. The compiler would reject throwing a
Product reference to a String type or applying the operator instance, as shown
in previous example. With <source type> and <destination type> as Product
classes and TubeProduct, respectively, the Product and TubeProduct references
can indicate objects in the TubeProduct class (or subclasses) in the inheritance
hierarchy. Therefore, it makes sense to apply the operator instance or send a
Product reference to the TubeProduct type (Hewitt, 2019; Chand, 2020).

During operation, the result of applying the court operator is false,
because the reference Product1 of the Product class will actually name an object
of the Bulb subclass, and this object cannot be denoted by a reference of the
Product1 peer class. Applying the distribution results in a ClassCastException
for the same reason. This is why expressed conversions are said to be unsafe,
as they could throw a ClassCastException at runtime. Note that if the result of
the operator instance is false, the distribution involving operands will throw a
ClassCastException.

In the example, the result of applying the instanof operator is
also false, because the reference Product1 will further denote an object
of the Product2 class, whose objects cannot be denoted by a reference

Internal Auditing & Risk Management Year XV, No 4(60) December 2020

12

of its subclass Product3. Therefore, applying the distribution causes a
ClassCastException to be thrown at runtime.

The situation presented in the example illustrates the typical use of the
court operator to determine which object denotes a reference, so that it can
be performed for the purpose of carrying out special actions. The reference
Product of the Product class is initiated on an object of the Product3 subclass
(Ryder, 2020; Chand, 2020). The result of the operator instance is true, because
the reference Product1 will denote an object of the Product 4 subclass, whose
objects can also be denoted by a reference of its Product1 superclass. In the
same sign, the distribution is also valid. If the result of the operator’s court is
true, the distribution involving the operands will always be valid.

Example instanceof and Cast Operator

class Products {/ * ... * /}
class Products1 extends Products {/ * ... * /}
class Products2 extends Products {/ * ... * /}
class Products3 extends Products {/ * ... * /}
class Products4 extends Products {/ * ... * /}

public class TestProduct {
 public static void main (String [] args) {
 boolean result1, result2, result3, result4, result5;
 Products1 products1 = new Products1 (); // (1)
 // String str = (String) products1; // (2) Compile-time error.
 // result1 = products1 instanceof String; // (3) Compile-time er-
ror.
 result2 = products1 instanceof TubeProduct; // (4) false. Peer
class.
 // Products2 products1 = (Products) products2; // (5) ClassCastEx-
ception.

 result3 = products3 instanceof Products3; // (6) false: Super-
class
 // Products products3 = (products2) products1; // (7) ClassCastEx-
ception

 products4 = new Products4 (); // (8)
 if (products1 instanceof Products) {// (9) true
 Products4 products4 = (products) products1; // (10) OK
 // You can use products4 to access the Products4 class.
 }
 }
}

Internal Auditing & Risk Management Year XV, No 4(60) December 2020

13

As we have seen, the instance operator actually determines whether the
object reference value noted by the reference on the left can be assigned to a
reference of the type that is specified on the right. Note that an instance of a
subtype is an instance of its supertypes. At runtime, it is the type of the actual
object noted by the reference on the left, compared to the type specified on the
right. In other words, what matters is the type of the actual object denoted by
the reference at run time, not the type of reference (Wagner 2019; Ryder 2020).

The previous example provides several examples of a court operator. It
is instructive to go through the printed statements and understand the printed
results. The literal null is not a court of any kind of reference, as shown in the
printing statements (1), (2) and (6). An instance of a superclass is not an instance
of its subclass, as shown in the print statement (4). An instance of a class is not
an instance of a totally unrelated class, as shown in the print statement (10).
An instance of a class is not an instance of an interface type that the class does
not implement, as shown in the print statement (6). Any non-primitive array is
an Object and Object [] instance, as shown in the print statements (4) and (5),
respectively.

Example - Using the operator instance

IStack interface {/ * From the previous Example * /}
ISafeStack interface extends IStack {/ * From Previous Example * /}
class StackImpl implements IStack {/ * From Previous Example * /}
class SafeStackImpl extends StackImpl
 implements ISafeStack {/ * From the previous Example * /}

public class Identification {
 public static void main (String [] args) {
 Object obj = new Object ();
 StackImpl stack = new StackImpl (10);
 SafeStackImpl safeStack = new SafeStackImpl (5);
 IStack iStack;
 System.out.println (“(1):” +
 (null instanceof Object)); // Always false.
 System.out.println (“(2):” +
 (null instanceof IStack)); // Always false.

 System.out.println (“(3):” + // true: instance of subclass of
 (stack instanceof Object)); // Object.
 System.out.println (“(4):” +
 (obj instanceof StackImpl)); // false: Downcasting.
 System.out.println (“(5):” +
 (stack instanceof StackImpl)); // true: instance of
StackImpl.

Internal Auditing & Risk Management Year XV, No 4(60) December 2020

14

 System.out.println (“(6):” + // false: Object does not imple-
ment
 (obj instanceof IStack)); // IStack.
 System.out.println (“(7):” + // true: SafeStackImpl implements
 (safeStack instanceof IStack)); // IStack.

 obj = stack; // Assigning subclass to superclass.
 System.out.println (“(8):” +
 (obj instanceof StackImpl)); // true: instance of StackIm-
pl.
 System.out.println (“(9):” + // true: StackImpl implements
 (obj instanceof IStack)); // IStack.
 System.out.println (“(10):” +
 (obj instanceof String)); // false: No relationship.

 iStack = (IStack) obj; // Cast required: superclass assigned
subclass.
 System.out.println (“(11):” + // true: instance of subclass
 (iStack instanceof Object)); // of Object.
 System.out.println (“(12):” +
 (iStack instanceof StackImpl)); // true: instance of
StackImpl.

 String [] strArray = new String [10];
 // System.out.println (“(13):” + // Compile-time error,
 // (strArray instanceof String); // no relationship.
 System.out.println (“(14):” +
 (strArray instanceof Object); // true: array subclass of
Object.
 System.out.println (“(15):” +
 (strArray instanceof Object [])); // true: array subclass
of Object [].
 System.out.println (“(16):” +
 (strArray [0] instanceof Object)); // false: strArray [0]
is null.
 strArray [0] = “Amoeba strip”;
 System.out.println (“(17):” +
 (strArray [0] instanceof String)); // true: instance of
String.
 }
}

Output program:

(1): false
(2): false
(3): true
(4): false
(5): true

Internal Auditing & Risk Management Year XV, No 4(60) December 2020

15

(6): false
(7): true
(8): true
(9): true
(10): false
(11): true
(12): true
(14): true
(15): true
(16): false
(17): true

Convert class and interface type references

References to an interface type can be declared, and they can indicate class
objects that implement that interface. This is another example of upcasting. Note
that converting an interface type reference value to the class type that implements
the interface requires explicit casting. This is an example of downcasting. The
following code illustrates these cases:

IStack istackOne = new StackImpl(5); // Upcasting
StackImpl stackTwo = (StackImpl) istackOne; // Downcasting

Using the reference istack An IStack interface type, IStack interface methods
can be invoked on objects in the StackImpl class that implement this interface.
However, additional members of the StackImpl class cannot be accessed through
this reference without first sending it to the StackImpl class:

Object obj1 = istackOne.pop(); // OK. Method in IStack inter-
face.
Object obj2 = istackOne.peek(); // Nu OK. Method not in IStack
interface.
Object obj3 = ((StackImpl) istackOne).peek(); // OK. Method in Stack-
Impl class.

3. Polymorphism and dynamic methods
As an object, a reference will actually denote during run, it cannot always be
determined at compile time. Polymorphism allows a reference to name objects
of different types at different times during execution. A supertype reference has
a polymorphic behavior because it can denote objects of its subtypes.

When a non-private instance method is invoked on an object, the definition
of the method actually executed is determined by both the runtime object type and

Internal Auditing & Risk Management Year XV, No 4(60) December 2020

16

the method signature. Dynamic method searching is the process of determining
the method definition that a method signature makes during run, based on the
object type. However, a call to a private court method is not polymorphic. Such
a call can only take place within the class and is linked to the implementation of
the private method at the time of compilation (Del Nero, 2020; Chand, 2020).

The inheritance hierarchy is implemented in the following example.
The implementation of the draw () method is undone in all subclasses of the
Shape class. The invocation of the draw () method in the two loops from (3)
and (4) in the following example, is based on the polymorphic behavior of the
references and the dynamic search of the method. Sheet metal shapes contain
shape references indicating a circle, a rectangle and a square, as shown in (1).
At runtime, the dynamic search determines the execution of the draw () to be
executed, based on the type of object noted by each element in the table. This is
also the case for the elements in the drawables in (2), which contain IDrawable
references that can be assigned to any object of a class that implements the
IDrawable interface. The first loop will still work without any changes if objects
from new subclasses of the Shape class are added to the array shapes. If they
did not replace the draw () method, then an inherited version of the method
would be executed. This polymorphic behavior applies to whiteboard drawings,
in which subtype objects are guaranteed to have implemented the IDrawable
interface.

Polymorphism and dynamic method search form a powerful programming
paradigm that simplifies client definitions, encourages object decoupling, and
supports dynamic change of object-to-object relationships.

Example - Polymorphism and dynamic search of methods

IDesen interface {
 void draws ();
}

class Shape implements IDesen {
 public void draw () {System.out.println (“Draw a figure.”); }
}

class Circle extends Figure {
 public void draw () {System.out.println (“Draw a Circle.”); }
}

class Rectangle extends Figure {
 public void draw () {System.out.println (“Draw a Rectangle.”);
}
}

Internal Auditing & Risk Management Year XV, No 4(60) December 2020

17

class Square extends Rectangle {
 public void draw () {System.out.println (“Draw a Square.”); }
}

class Map implements IDesen {
 public void draw () {System.out.println (“Draw a Map.”); }
}

public class PolymorphRefs {
 public static void main (String [] args) {
 Figure [] figures = {new Circle (), new Rectangle (), new
Square ()}; // (1)
 Drawing [] drawings = {new Figure (), new Rectangle (), new
Map ()}; // (2)

 System.out.println (“Draw figures:”);
 for (int i = 0; i <figures.length; i ++) // (3)
 figures [i] .deseneaza ();

 System.out.println (“Draw figures:”);
 for (int i = 0; i <figures.length; i ++) // (4)
 figures [i] .deseneaza ();
 }
}

Output program:
Draw figures:
Draw a Circle.
Draw a Rectangle.
Draw a Square.
Draw figures:
Draw a Figure.
Draw a Rectangle.

Draw a Map.

Choose between Inheritance and aggregation. Encapsulation

An object has properties and behaviors that are encapsulated inside the object.
The services he offers to his clients include his contract. Only the object-defined
contract is available to customers. Implementing its properties and behavior is
not a customer concern. Encapsulation helps to clarify the difference between
an object’s contract and execution. This has major consequences for program
development. The implementation of an object can be changed without
implications for customers. Encapsulation also reduces complexity, because

Internal Auditing & Risk Management Year XV, No 4(60) December 2020

18

the inside of an object is hidden by customers, who cannot influence its
implementation (Hewitt, 2019; Ryder, 2020).

A UML class diagram shows several aggregation relationships and
an inheritance relationship. The class diagram shows a queue defined by
aggregation and a stack defined by inheritance. Both are based on linked
lists. A linked list is defined by aggregation. The implementation of these
data structures is presented in the following example. The example aims to
illustrate inheritance and aggregation, not the implementation of industrial
strength of tails and stacks. The Node to (1) class is simple, defining two fields:
one indicating the data and the other indicating the next node in the list. The
LinkedList class at (2) keeps track of the list by administering a head and a
queue reference. Nodes can be inserted forward or backward, but deleted only
from the front of the list.

Example - Implementation of data structures through inheritance and
aggregation

class Node {// (1)
 private Object data; // Data
 private Node next; // Next node

 // Constructors for initializing the next node.
 Node (Object data, Node next) {
 this.data = data;
 this.next = next;
 }

 // Method
 public void setData (Object obj) {data = obj; }
 public Object getData () {return data; }
 public void setNext (Node node) {next = node; }
 public Node getNext () {return next; }
}

class LinkedList {// (2)
 protected Node head = null;
 protected Node tail = null;

 // Method
 public boolean isEmpty () {return head == null; }
 public void insertInFront (Object dataObj) {
 if (isEmpty ()) head = tail = new Node (dataObj, null);
 else head = new Node (dataObj, head);
 }
 public void insertAtBack (Object dataObj) {

Internal Auditing & Risk Management Year XV, No 4(60) December 2020

19

 if (isEmpty ())
 head = tail = new Node (dataObj, null);
 else {
 tail.setNext (new Node (dataObj, null));
 tail = tail.getNext ();
 }
 }
 public Object deleteFromFront () {
 if (isEmpty ()) return null;
 Node removed = head;
 if (head == tail) head = tail = null;
 else head = head.getNext ();
 return removed.getData ();
 }
}

class QueueByAggregation {// (3)
 private LinkedList qList;

 // Builder
 QueueByAggregation () {
 qList = new LinkedList ();
 }

 // Method
 public boolean isEmpty () {return qList.isEmpty (); }
 public void enqueue (Object item) {qList.insertAtBack (item); }
 public Object dequeue () {
 if (qList.isEmpty ()) return null;
 else return qList.deleteFromFront ();
 }
 public Object peek () {
 return (qList.isEmpty ()? null: qList.head.getData ());
 }
}

class StackByInheritance extends LinkedList {// (4)
 public void push (Object item) {insertInFront (item); }
 public Object pop () {
 if (isEmpty ()) return null;
 else return deleteFromFront ();
 }
 public Object peek () {
 return (isEmpty ()? null: head.getData ());
 }
}

public class Client {// (5)
 public static void main (String [] args) {
 String string1 = “Queues!”;

Internal Auditing & Risk Management Year XV, No 4(60) December 2020

20

 int length1 = string1.length ();
 QueueByAggregation queue = new QueueByAggregation ();
 for (int i = 0; i <length1; i ++)
 queue.enqueue (new Character (string1.charAt (i)));
 while (! queue.isEmpty ())
 System.out.print ((Character) queue.dequeue ());
 System.out.println ();

 String string2 = “! Reverse String”;
 int length2 = string2.length ();
 StackByInheritance stack = new StackByInheritance ();
 for (int i = 0; i <length2; i ++)
 stack.push (new Character (string2.charAt (i)));
 stack.insertAtBack (new Character (‘!’)); // (6)
 while (! stack.isEmpty ())
 System.out.print ((Character) stack.pop ());
 System.out.println ();
 }
}

Output program:
Queues!
Reverse string!

Choosing between inheritance and aggregation for model relationships can
be a crucial design decision. A good design strategy argues that inheritance
should only be used if the relationship is unequivocally maintained throughout
the life of the objects involved; otherwise, aggregation is the best choice. A
role is often confused with an is-a relationship. For example, given the class
employee, it would not be a good idea to model the roles that an employee,
such as a manager or cashier, can play by inheritance if these roles change
intermittently. Changing roles would involve a new object representing the
new role each time this happens (Wagner, 2019; Campbell, 2020).

4. Conclusions

Code reuse is best achieved by aggregation when there is no relationship.
Applying an artificial is a relationship that is not naturally present, it is usually
not a good idea. The class defines the operations of a queue, delegating such
requests to the LinkedList base class. Customers who implement a queue in
this way do not have access to the base class and therefore cannot break the
abstraction (Hewitt, 2019; Campbell, 2020). Both inheritance and aggregation
promote implementation encapsulation, because implementation changes are

Internal Auditing & Risk Management Year XV, No 4(60) December 2020

21

localized in the classroom. Changing the contract of a superclass can have
consequences for subclasses, called the ripple effect, and also for customers who
are dependent on certain subclass behavior (Del Nero, 2020; Wagner, 2019).
Polymorphism is achieved through inheritance and interface implementation.
The code based on polymorphic behavior will continue to work without change
if new subclasses or new classes that implement the interface are added. If
there is no obvious relationship, then the polymorphism is best obtained by
using aggregation with the interface implementation. In most application
polymorphism offers flexibility and add value to existing models and so the
users may choose the best models for their business logic and entities that are
very specific.

References

Campbell, Drew. (2020). Everything You Need to Know About Polymorphism, www.
better-programming.org.

Chand, Swatee. (2020). Everything You Need to Know About Polymorphism, www.
edureka.org.

Del Nero, Rafael. (2020). Polymorphism and inheritance in Java, www.infoworld.com.
Hewitt, Eben. (2019). Java Garage. Upper Saddle River, US: Pearson Publication.
Ryder, Barbara G. (2020). Fragment Class Analysis for Testing of Polymorphism in

Java Software, www. researchgate.net.
Wagner, Gerd. (2020). Really Understanding Association, Aggregation, and

Composition, www. codeproject.com.

