Internal Auditing & Risk Management Anul X, Nr.1(37), March 2015

THE OPTIMIZATION OF QUERIES IN ECONOMIC
APPLICATIONS THAT USE RDBMS’S

PhD. Danut - Octavian SIMION
“Athenaecum” University of Bucharest, Romania
danut_so@yahoo.com

Abstract:

The paper presents the advantages of the optimization of queries in
economic applications that use RDBMS’s. The economic applications that are
based on a relational database management system (RDBMS) often require fast
responses at the queries made by users. Fast responses mean a good design of the
database and saves time and money for the end users and for companies that use
these types of applications. Sometimes a good design doesn’t always ensure fast
responses of queries so other methods of optimization may improve time and
enables users to obtain more from their economic applications. There are methods
to optimize queries such as transforming the queries using algebraic rules,
modifying the initiation parameters of RDBMS, using hints for optimization, using
instruments such as Automatic SOL Tuning. This optimization needs to analyze
queries and to make an optimization plan by using explain plan command to
calculate statistics and the most important task is to create the appropriate indexes
for one or more columns. These methods helps the users to get fast responses for
their queries and to improve the design and rules for the database that they use in
specific economic applications.

Keywords: SQL Tuning, Economic applications, RDBMS, PL/SQOL,
optimization hints, indexes, UML diagram.

Introduction

Applications retrieval data is expressed in different relational
languages for RDBMS. To obtain optimum results, use automated interfaces
rewrite retrieval requests by taking two steps:

» Expression retrieval requests in the form of relational algebraic
expressions, which is based on the equivalence between calculation and
relational algebras;

* Applying transformations on relational algebraic expressions
constructed in the previous step, to obtain equivalent and efficient relational
expressions.

55

Internal Auditing & Risk Management Anul X, Nr.1(37), March 2015

The transformation can be achieved by two optimization strategies:
general and specific. General strategies are independent of data storage
mode. They are based on properties of relational algebra operations
(commutability, associativity, composition). Such strategies are selected
before the junction, before the junction projection, selection before the
screening and combining multiple selections. Specific strategies take into
account the data storage module and are characteristic of an RDBMS. The
elements that influence the execution of operations that occur in a retrieval
request are: direct access ordering rules algebraic expressions specific to a
RDBMS [2], [5]. There are some methods to optimize queries by modifying
initialization parameters or by using optimization hints or by using
specific/graphic instruments, but the most important is to use an explain
plan to calculate statistics and to create indexes or to transform/rewrite the

query.

1. Using initialization parameters for optimization

Many boot parameters are used to adjust and increase database
performance. For example DB _FILE MULTIBLOCK READ COUNT
defines the number of blocks read simultancously accessing a database table.
It is used to optimize the total browsing a table when looking for a certain
value of a column in the corresponding row.

The parameter SQL_TRACE - write to a trace file for SQL executed and
the statistics includes information about:

* Number of parsing, execution and results data sets;

« Different CPU execution time;

* The number of physical and logical reads;

» The number of rows processed;

* Number of library cache omitted;

2. Create an execution plan for queries

A good idea for optimization is to use an EXPLAIN PLAN command
that can be included to explain preordered SQL execution plan. Execution
plan is a sequence of physical operations that RDBMS must execute to
return the required data. By analyzing the execution plan for SQL queries, it
can be secen which of them are ineffective and can compare the alternatives
to find out which can give better performance. An example of the command
is:

SELECT LPAD(™ °, 2*level) || operation |[|' ~ ||
options |[' ° || object name "Execution Plan"
FROM plan table
CONNECT BY PRIOR id = parent id

56

Internal Auditing & Risk Management Anul X, Nr.1(37), March 2015

START WITH ID = 1;

This command will have as result the following:

SELECT STATEMENT
NESTED LOOP

TABLE ACCESS BY ROWID tablel
INDEX RANGE SCAN column_idx1l

TABLE ACCESS BY ROWID table2
INDEX RANGE SCAN column idx2

The analysis of this data shoes if indexes are used, if the attributes which
make binding tables (join) are indexed, or whether a particular table is
accessed in full scan mode or RANGE SCAN. Following these analyzes, the
programmer / database administrator decides to create new indexes or
SELECT statements hint will be introduce to use existing indexes [1], [6].

The command ANALYZE enable validation and calculation of statistics
for an index, table or cluster. These statistics are used by the optimizer
based on the cost when calculating the most efficient plan for data mining.
In addition to its role optimizer, ANALYZE also helps to validate objects
and manages space structure system.

An example of this command is:
ANALYZE TABLE tablel COMPUTE STATISTICS;

It is also possible to calculate statistics with following command that can
be used to estimate 50% of rows:

ANALYZE TABLE tablel ESTIMATE STATISTICS SAMPLE 50
PERCENT;

Other RDBMSs provides a procedure that allows the user to analyze a
scheme:

EXECUTE
DBMS UTILITY.ANALYZE SCHEMA (USER1', 'COMPUTE') ;

In this command USERI is the owner of tables, clusters and indexes, and
COMPUTE is the type of the analysis that is required.

3. Using optimization hints for queries

Optimizing hint can be used with SQL commands to modify the
construction plans. Hint allow the programmer to make decisions for the
optimizer, so a hint mechanism may instruct the optimizer to choose a

57

Internal Auditing & Risk Management Anul X, Nr.1(37), March 2015

specific execution plan for a query based on certain criteria. For example,
the programmer may decide that a certain index is more suitable for
different queries. Based on this information hints instructs the optimizer to
use the optimal execution plan [3], [4].

Hint sites can be used for the following types:

* Single tables - hints specified for a table or view. INDEX and USE NL
are such hints;

» Multi-tables - hints are similar for single tables, except that the hint can
specify multiple tables or views. LEADING hint is an example of multi-
table. USE NL (tablel table2) is not considered multi-table hint because it
is an abbreviation for USE_NL (table1) and USE_NL (table2);

* Query Block - hints for block query sites operate on a single block or
more. STAR TRANSFORMATION and hint UNNEST are examples of
query block sites;

 Statement - hints statement applies to the entire SQL statement. ALL
ROWS is an example of a hint.

Hints to transform Queries (Query Transformations)
Each of the following hints instructs the optimizer to use the following SQL
query transformations:
e NO QUERY_TRANSFORMATION
USE_CONCAT
NO_EXPAND
REWRITE
NO_REWRITE
MERGE
NO_MERGE
STAR _TRANSFORMATION
NO_STAR_TRANSFORMATION
FACT
NO_FACT
UNNEST
e NO UNNEST
Hints to order connections/relationships between tables/views (Join
Orders)
The following hints suggest join order:
o LEADING
e ORDERED

Hints for Join Operations (Join Operations)
Each of the following hints instructs the optimizer to use a specific join for a
table:

58

Internal Auditing & Risk Management Anul X, Nr.1(37), March 2015

e USE NL

e NO_USE NL

o« USE NL WITH INDEX

e USE MERGE

e NO USE MERGE

e USE HASH

e NO_USE HASH
Use of hints USE_NL and USE_MERGE are recommended with any other
hints join order. The RDBMSs uses these hints when referenced table is
forced to be the inner table in a join.

When used, hints may use a whole set of rules to ensure optimal
execution plan. For example, in the case of complex queries with multiple
relationships between tables, and when is specified only the INDEX hint for
a given table, the optimizer must determine the remaining access paths for
use, and appropriate methods for join. Therefore, even if the INDEX hints
are given, the optimizer might not necessarily use that hint, because it
determines the required index that cannot be used due to the join methods
and access roads. In the following example, the LEADING hint specifies the
exact order's join (relationship); join methods to be used are also specified

[11, [4]-

SELECT /*+ LEADING(t2 t1) USE NL(tl) INDEX(tl coll id pk)
USEiMERGE(t3) FULL (t3) */
tl.columnl, tl.column2, t3.column_id, sum(t2.column3)
total col3
FROM tablel tl1, table2 t2, table3 t3
WHERE tl.columnl id = t2.columnl_id
AND tl.column2 id = t3.column2 id
GROUP BY tl.columnl, tl.column2, t3.column id
ORDER BY total col3;

By using the structure's hint global view can change and it can be avoid
specifying the index hint in the body's view. To force the use an index in a
table it can be specified one of the following commands:

SELECT /*+ INDEX(v.t2.t3 col ix) */ *
FROM v;

SELECT /*+ INDEX(@SEL$S2 t2.t3 coll ix) */ *
FROM v;

SELECT /*+ INDEX(@SEL$3 t3 col2 ix) */ *
FROM v;

59

Internal Auditing & Risk Management Anul X, Nr.1(37), March 2015

4. The usage of a SQL tuning advisor

Automatic SQL Tuning capabilities are provided by a tool called SQL
Tuning Advisor server. SQL Tuning Advisor takes one or more SQL
statements as input and Automatic Tuning Optimizer is invoked to perform
tuning commands for SQL statements. The result for SQL Tuning Advisor
is in the form of advice or recommendation, along with a rationale for each
recommendation and the expected result. Recommendation refers to a
collection of statistics on objects, creation of new indexes, restructuring
orders SQL statements, or creates new profiles. A user can choose whether
to accept the recommendation to complete the tuning SQL commands.
Inputs for SQL Tuning Advisor can be for a single SQL command or set of
commands SQL Tuning Set to be first created. An STS is a database object
that stores multiple SQL commands with execution context. An STS can be
created manually using an APl command line interface or through a
framework [3], [5]. Recommended interface for running SQL Tuning
Advisor tool is a specific framework of the RDBMS. SQL Tuning Advisor
can be run using DBMS SQLTUNE package. To use this API, the user
must grant specific privileges and follow the following steps:

= Creating a SQL Tuning Set (if tuning multiple SQL commands

include)

= (Create a SQL tuning task

= Running a SQL tuning task

= Showing results for SQL tuning task

= Implementation of the recommendations

Creating a SQL Tuning Set.

It can be created a tuning task in the text of a SQL. SQL Tuning Set is
containing multiple commands, a SQL command selected. SQL identifier of
the cursor cache or a statement of Automatic Workload Repository for
selected SQL. For example, SQL Tuning Advisor use a SQL commands
necessary to optimize it must be passed as a CLOB argument. For example:

DECLARE
my task name VARCHARZ (30);
my sqgltext CLOB;

BEGIN
my sqgltext := 'SELECT /*+ ORDERED */ * '
|l
'FROM tablel tl, table2 t2, table3 t3 ' ||
'WHERE tl.coll id = t2.ccll id AND ' ||
't2.col2 id = t3.col2 id AND ' [
't.col2 id < :bnd';
my task name := DBMS SQLTUNE.CREATE TUNING TASK (

60

Internal Auditing & Risk Management Anul X, Nr.1(37), March 2015

sql text => my sgltext,
bind list =>
sgl binds(anydata.ConvertNumber (500)),
user name => 'HR',
scope => 'COMPREHENSIVE',
time limit => 30,
task name => 'my sql tuning task',
description => 'Task to tune a query on a specified
employee') ;
END;
/

In this example, 500 is the value for the variable binding (bind): bind
passed as a function argument type for SQL BINDS. The function
CREATE TUNING TASK analyze user SQL command and the goal is to
set COMPREHENSIVE representing that performs the analysis adviser
SQL profiling and 60 seconds is the time spent on the run. In addition
values are available for the task name and description. After creating the
task tuning, it must be executed to start the tuning process.

BEGIN
DBMS SQLTUNE.EXECUTE TUNING TASK(task name =>
'my sgl tuning task');
END;
/

5. Other methods used to optimize queries

There are other methods of retrieval query applications derived from
how to build a relational database and the organization of data and acting on
their orders:

* Use rules of E.F. Codd in the design of a database;

* Use and implementation of normal forms (NF1 - NF5) when
designing / redesigning tables and their relationships;

» Use indexes to tables and columns used in relationship to those used
in WHERE clauses;

* For complex queries that contain sub-queries are recommended
intermediate tables, so data can be indexed and made available more
quickly;

* To optimize the SQL, it is recommended to include them into objects
stored in the database (functions, procedures, packages);

* For frequently used queries and views are recommended temporary
tables in memory (global temporary table) or a special data type
vector (array, array of tables, etc.);

* For complex retrievals are recommended tools for data mining,
OLAP, ROLLUP, CUBE - specific data warchouse (data warchouse);

61

Internal Auditing & Risk Management Anul X, Nr.1(37). March 2015

* Use EXISTS clause instead of IN clause in a complex query that
includes a sub-query;

e It is recommended to avoid data transformation functions (trim,
TO CHAR, TO DATE, TO NUMBER, etc.) for attributes used in
WHERE clauses because their associated indexes are no longer used;

» It is recommended queries using two or more tables to the FROM
and WHERE clauses use (JOIN conditions) order from low to high
(less data tables - tables for more data);

* Use the BULK COLLECT clauses for particular types of data;

* Use Dynamic SQL Statements (written as text) using bind variables
and because they are parsed before being executed by special
DBMS SQL package;

* Use explicit cursors (declared by programmers), because allow
control activities of transactions, the number of rows (tuples)
brought, etc.;

e It is recommended rewriting SQL commands by keeping the column
order in the SELECT phrase corresponding tables in the FROM
clause, use of aliases, etc.;

* In SQL statements - SELECT applying computing functions such as
COUNT, use COUNT expression (number) instead of COUNT (*);

* In complex sentences SQL - SELECT using sub-queries in the
FROM clause is recommended to use the expression FROM
(SELECT columnl, column2 FROM);

* In terms of administration it is recommended increasing BUFFER
segment, cache, temporary table space and deal with situations that
had an error, warning sites, jobs executed, etc.;

* It is recommended that database administrators to use tools in the
enterprise resource management activities, to discontinue the
remaining sessions hung consuming large resources of space
(TABLESPACE) and CPU;

» It is recommended to run large job sites or those data backups to run
at times when there is little time users connect to the database;

e It is recommended tuning database through its configuration
parameters, taking into account the recommendations and
documentation for specific RDBMS [2], [4].

6. Conclusions

To optimize retrieval applications in RDBMS's is necessary to take into
account the recommendations of the manufacturer to be consulted specialized
forums, use of the service request type and not least to be taken into consideration
basic rules used when designing the database. It is also useful to use EXPLAIN
PLAN SQL commands as appropriate, ANALYZE, HINT SQL and SQL Tuning

62

Internal Auditing & Risk Management Anul X, Nr.1(37), March 2015

Automatic Tool Advisor. The optimization work involves both programmers who
write SQL and using development frameworks, and database administrators using
specific data management tools (management console, database parameter setting,
tuning, etc.) [1], [6]. Optimizing queries is an important task in economic
application and these activity allows users to extract more rapid the information
they need and so the efficiency of those increase in a significant way. A good
design of the database is required and also to use different tools or hints to
increase efficiency of queries. Also using specific algebra rules helps in the join
operations between algebraic sets, by creating and using different indexes on
specific columns [2], [4]. Economic applications can benefit from an efficient
way of using queries that are created by programmers or tuned by the database
administrators based on a good design and usage of UML diagrams.

References
1. Dan Tow, “SQL Tuning”, O’Reilly, 2012;
2. Donald K. Burleson, “Advanced Oracle SQL Tuning”, Rampant

Teo-Press, 2013;

3. Kevin S Goff, “Productivity Tips for Optimizing SQL Server
Queries”, Code Magazine, 2014;

4. Rodrigo Koch, “SQL Database Performance Tuning for
Developers”, Toptal, 2012;

5. Pinal Dave, “SQL SERVER — Tips for SQL Query Optimization by
Analyzing Query Plan”, Blog SQL Authority, 2013;

6. Sean McCown, “7 performance tips for faster SOQL queries”,
InfoWorld, 2012;

URI: http://technet.microsoft.com/en-us/library/

URI: http://msdn.microsoft.com/en-us/library/ff650689.aspx
URT: http://dev.mysql.com/doc/refman/5.6/en/

URL: http://hungred.com/useful-information/

63

Internal Auditing & Risk Management Anul X, Nr.1(37), March 2015

64

