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  Abstract 

In the last 3 centuries, researchers from different area of expertise, 

such as, demographers, medical doctors and actuarial mathematicians, 

have been struggling to develop a better model to estimate biometric 

functions. Such a model is long due in order to improve the present 

methodology regarding certain statistic-demographic rates. The issue of 

missing data (for older ages), the issue of computing correctly the average 

expected life and last but not least the forecast of mortality, could be solved 

through the use of better models that can determine the components of life 

tables. A life table represents a means of determining the probabilities of an 

individual living to or dying at a certain age. A better image of the ageing 

process for human population is shown by determining the probability of 

death occurring at specific ages over specified periods of time. Parametric 

models for the projection of mortality rates were first introduced by Lee and 

Carter (1992) in the US, representing an important development in 

demography. The model was followed by several others models which were 

developed over the years [Gompertz, 1825; Makeham, 1860; Weibull, 1951; 

Beard, 1959; Vaupel et al, 1979, Kannisto, 1992]. The present study is 

trying to provide certain information over the best use of these types of 

models under specific hypothesis. We will focus on the methodology of 

estimating the parameters for Gompertz’ law of mortality and how well it 

can be fitted using data from Romania in 2012. 
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Introduction 

Since the first half of the 18
th

 century, laws of mortality (parametric 

functions) that can be used to model empirical mortality curves, have 

developed into one of the most important work for demographers and 

actuarial mathematicians, but also to all others interested in the statistical 
study of human mortality. 

One of the most well-known model, which can be interpreted as a 
parametric mathematical law, was proposed by Gompertz (1825), where the 

risk of mortality could be estimated by: , which in fact represents 

an exponential function. Both B and c are considered non negative and x 

represents the age of an individual, which most commonly is in an interval 

between 0 and 100. Most modern data are available only until the age of 84, 

but further complex studies use data well over the age of 100 years 

(according to the age of the elderly individuals) [Kannisto, 1994, Jeune and 

Vaupel, 1995, Kannisto, 1996].  

In literature we can find also three laws of mortality that apply to all 

ages. Two of them were developed by Thiele and Wittstein in the late 19th 

century, the third, developed by Heligman and Pollard, more recently. 

Gompertz modeled his law by studying the survival curves from life 
tables which were available at that time. He described it as a hypothesis and 

considered the consequences of its use at larger age intervals, though not 
including infancy or very old age mortality.  

Later on, Brillinger (1961), said that if the human body was to be 
considered as a series system of independent components, then the force of 

mortality may follow Gompertz's law. 
In the past, analytical approaches (such as the Gompertz’or 

Makeham’s law) managed to satisfy this hypothesis approximately over a 

broad range of ages. However, as modern data have become more available 

and reliable, the uses of approximate have become less acceptable. 

Nowadays, mortality is most commonly represented in the form of a 

life table, which gives probabilities of death or survival, within one year, at 

exact integral age. These probabilities are generally based on tabulations of 

deaths in a given population and estimates of the size of that population. 

Functions in the life table can be generated from  where  is the 

probability of death within a year of a person aged x.  
Although a life table does not give mortality at non-integral ages or 

for non-integral durations, as can be obtained from a mathematical formula, 
acceptable methods for estimating such values are well known.  

In fact, laws of mortality (parameter functions) provide a better way 
determine mortality, being able to give a good fit to empirical mortality 

curves, mostly because they represent a better means of graduation than 
discrete mortality representations. 
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Because we need to focus on mortality representations by 

differentiable parametric functions, traditional model life tables (tabular 

representations) of the age pattern is not of interest in this paper.  

The results presented in this paper suggest that Gompertz’ laws is an 

appropriate model of mortality to be used for the modern population of 
Romania. 

The paper begins with a presentation of necessary statistic-
demographic notions, along with the model that we took into consideration. 

Within the 2
nd

 section, I focus on the estimation of the parameters, while in 
the 3rd section we present an application of the model for the population of 

Romania. 
 

1. Standard statistic-demographic notions 

 

a) Survival probability. Take  which we will call it the 

probability of survival for a specific individual of age x after a 

number of t years, denoted by xt p .  

Obviously we say that 10 =xp . 

In general, common laws of mortality use as upper range the age of 

100 years, denoted by ώ. Thus we can say: 0=xt p  if . 

b) Probability of death. Let xtt q′  represent the probability that a 

specific individual of age x, to die at the age between tx +  and ttx ′++ , 

meaning: 

xtt q′  = ( )ttTtP x ′+≤<  = 
( )

( )xTP

ttxTtxP

x

x

>

′++<<+
  (1.1) 

Thus, we can say:  

xt p  = xtt q′  + xtt p′+       (1.2) 

from where we can establish a connection between the survival 

probability and the probability of death: 

xtt q′ = xt p  - xtt p′+       (1.3) 

For easier understanding we take: xtxt qq 0=  

The next relations are a natural evolution from the above relations: 

xt q  = −xp0  xtxt pp −=+ 10      (1.4) 

xxx pqq −== 11        (1.5) 

txtxtxtt ppp +′′+ ⋅=        (1.6) 

The probability of death xq  is also known under the name of annual 

rate of mortality or annual coefficient of mortality. 
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The following are the additional definitions of standard life table 

functions: 

• The entry , i.e. number of survivals (in the life tables), shows 

the number of survivors of that birth cohort at each succeeding 

exact integral age.  

• The entry , shows the number of deaths that would occur 

between succeeding exact integral ages among members of the 

cohort.  

• The entry denoted  gives the number of person-years lived 

between consecutive exact integral ages x and x+ 1 and  gives 

the total number of person-years lived beyond each exact integral 

age x by all members of the cohort. 

• The final entry in the life table,  represents the average number 

of years of life remaining for members of the cohort still alive at 

exact integral age x, and is called the life expectancy. 

The  entry in the life table is also useful for determining the age 

corresponding to a specified survival rate from birth, which is defined as the 

age at which the ratio of  to 100000 is equal to a specified value between 0 

and 1. 

The life table functions , , , , and  are being calculated as 

follows: 
  = 100000 

  =      x = l, 2, 3,... 

  =     x = l, 2, 3,... 

  =  

  =     x = l, 2, 3,... 

  =   x = 0, l, 2, 3,... 

  =       x = 0, l, 2, 3,... 

The model we considered in this paper is an improved version of the 

Gompertz’ law of mortality:  

 

2. Estimating the parameters from the laws of mortality 

2.1 Improved Gompertz’ law of mortality 

 

    (2.1) 
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If  we say that Gompertz repartition is of increasing failure rate 

type (theory of reliability), if  is of decreasing failure rate. From (2.1) 

we can deduce the corresponding survival function, which looks like: 

  (2.2) 

along with its density 

     (2.3) 

We can drop the constant term , by multiplying  with . By 

doing this, we just simplify future computations with the density function, 

and then dropping it altogether as it is not of interest. 

     (2.4) 

The derivative of the density function will look like: 

     (2.5) 

In order to establish the solution of this function, we must take into 

consideration the initial conditions of the model, namely 

.  

We can drop the exponential function after the parenthesis because it 

is obviously positive, as it will not influence the final sign of our function 

nor will it help providing a solution. After that we extract the common term 

c, to look like: 

      (2.6) 

If we can find a solution for this function, we will fix it as the mode 

for our survival data. Thus we reach the following equation: 

      (2.7) 

this is so far in line with the initial condition as the left term of the 
(2.7) is an exponential function and the right term is b, which we already 

know it to be positive. Further we solve this with the help of natural 

logarithm: 

      (2.8) 

This leads to the conclusion that the final value of the mode is: 

       (2.9) 

The reason for determining Mode, and further on the Median, is 

because we lack a methodology to compute the expected value of the 
Gompertz repartition.  

Instead, we can compute its quantile, which will benefit us in the 
process of determining b and c parameters. 
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Let  represent a solution for the next equation: 

        (2.10) 

Thus 
       (2.11) 

If we apply natural logarithm in the (2.10) equation, we can find the 

value of : 

   (2.12) 

      (2.13) 

What is of interest here is that the relation between Median and 

Mode, depends solely on one parameter, that is b: 

     (2.14) 

If we want, we can generalize the method for determining the 

parameters, as I present it next. We start by taking 2 values for x, that are 
significant to us, let’s say  and : 

       (2.15) 

where b and c represent the solutions. We replace with  

 and rewrite the (2.15) system to get the following: 

   (2.16) 

Choosing  and  was preferable to  and  for easier 

computation over the generalized method. Moving forward, if we try to 

eliminate c from each equation of the (2.16) system, we get the following: 

   (2.17) 

Now, if we divide the equations from the final form of (2.17) system, 

we get the following relationship: 

       (2.18) 

where, values of  as well as values of  and  are known; 

thus the parameter to be determined remains b. 
Let’s say that ; one can choose  to correspond to the 

empirical median, which is about age 78, and  (or any last recorded 

age, in the series, available).  

The value of 78 is taken from the life tables, for Romania in the year 

2012. (Source: Eurostat database, life tables: national data, demo_mlifetable) 
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As we want to set a generalized method, one can look in the life 

tables and extract this value at the age where we have half of the cohort of 

100000. Also remember that  and . 

 

3. Application on Romania using Gompertz’ law of mortality 
 

Continuing the work from 2
nd

 section of this paper, we can test the 
methods using data for Romania, extracted from life tables, in 2012 (Annex 

1) 
Gompertz’s law: In (2.15) equation, we replace  with  and  

with the specific value for  extracted from the life tables (see Annex 1). 

Taking into consideration the method described in section 2, and replacing 

, ,  in (2.18) and (2.16) we determine the 

parameters: , respectively  0.0905 

After determining the values of both parameters for both laws, we 
can estimate the survival function and compare it with the empirical one. 

The most important aspect, here, is to determine the distance between them. 
The smaller this distance is the better for our model.  

In figure 3.1 we can see the representation of both curves, and the 

fact that Gompertz’ curve is very well fitted to the empirical one. We set 

empirical_ux to represent the empirical data extracted form life tables and 

gompertz_ux as fitted curve according to Gompertz’ law of mortality. 

 

Figure 3.1 – Mortality risk curves, Empirical vs Gompertz’law 

 
Source: Eurostat, demo_mlifetable (author’s representation) 
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4. Conclusions 

According to the data determined in section 3 of this paper (see 

figure 3.1), we can say that Gompertz’s has found a way to evaluate the 

trend of mortality, for a specific population. With this in mind, we can 

continue and compute the risk of mortality . As we already know, 

Gompertz’law of mortality doesn’t fully model certain aspects of mortality 

trends (infancy and advanced ages risks of mortality), neither did he take 

into account that not all people die of old age. Putting that aside, the model 

is still surprisingly well fitted to data available from the last 100 years. 

Section 2 provided us with the means to calculate certain statistic-

demographic indicators, specified usually in life tables, but without relying 

simply on empirical data. Moreover, due to the lack of data for more 

advanced ages (over 84 years, and even scarce for over 100 years), we can 

determine our on data based on the models presented in this study. The same 

methodology can be also applied in the case of Makeham’s curve. 
We can confirm the initial hypothesis of Gompertz that the risk of 

mortality is dependent only on age and location (data in life tables are 
specific to a country or region). With this we can search for specific patterns 

or disparities between regions (Diaconescu, 2013, 2014), highlighting 
possible mortality dominance between population of different sexes, regions 

or both. We can than start to make a demographic profile related to the 
probability of death correlated with the average life expectancy and other 

economic indicators. 
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ANNEX 1 

 
 

 

Age Survivors empirical_ux gompertz_ux Age Survivors empirical_ux gompertz_ux 

0 100000 0.00920 0.00005 42 96092 0.00254 0.00241 

1 99080 0.00070 0.00006 43 95848 0.00289 0.00264 

2 99011 0.00041 0.00006 44 95571 0.00315 0.00289 

3 98970 0.00026 0.00007 45 95270 0.00308 0.00316 

4 98944 0.00018 0.00008 46 94977 0.00422 0.00346 

5 98926 0.00028 0.00008 47 94576 0.00426 0.00379 

6 98898 0.00018 0.00009 48 94173 0.00464 0.00415 

7 98880 0.00024 0.00010 49 93736 0.00537 0.00454 

8 98856 0.00020 0.00011 50 93233 0.00611 0.00498 

9 98836 0.00017 0.00012 51 92663 0.00690 0.00545 

10 98819 0.00028 0.00013 52 92024 0.00719 0.00596 

11 98791 0.00021 0.00015 53 91362 0.00798 0.00653 

12 98770 0.00027 0.00016 54 90633 0.00900 0.00715 

13 98743 0.00027 0.00017 55 89817 0.00996 0.00782 

14 98716 0.00041 0.00019 56 88922 0.01026 0.00856 

15 98676 0.00033 0.00021 57 88010 0.01135 0.00937 

16 98643 0.00045 0.00023 58 87011 0.01145 0.01026 

17 98599 0.00047 0.00025 59 86015 0.01278 0.01123 

18 98553 0.00062 0.00027 60 84916 0.01324 0.01230 

19 98492 0.00062 0.00030 61 83792 0.01425 0.01346 

20 98431 0.00068 0.00033 62 82598 0.01593 0.01474 

21 98364 0.00057 0.00036 63 81282 0.01733 0.01613 

22 98308 0.00079 0.00039 64 79873 0.01714 0.01766 

23 98230 0.00086 0.00043 65 78504 0.01903 0.01934 

24 98146 0.00088 0.00047 66 77010 0.02046 0.02117 

25 98060 0.00068 0.00052 67 75434 0.02193 0.02317 

26 97993 0.00082 0.00057 68 73780 0.02460 0.02537 

27 97913 0.00068 0.00062 69 71965 0.02594 0.02777 

28 97846 0.00069 0.00068 70 70098 0.02899 0.03040 

29 97778 0.00077 0.00074 71 68066 0.02937 0.03328 

30 97703 0.00088 0.00081 72 66067 0.03474 0.03643 

31 97617 0.00085 0.00089 73 63772 0.03754 0.03988 

32 97534 0.00097 0.00098 74 61378 0.04098 0.04366 
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Age Survivors empirical_ux gompertz_ux Age Survivors empirical_ux gompertz_ux 

33 97439 0.00106 0.00107 75 58863 0.04604 0.04780 

34 97336 0.00111 0.00117 76 56153 0.04958 0.05233 

35 97228 0.00131 0.00128 77 53369 0.05681 0.05728 

36 97101 0.00133 0.00140 78 50337 0.06178 0.06271 

37 96972 0.00153 0.00153 79 47227 0.06752 0.06865 

38 96824 0.00163 0.00168 80 44038 0.07444 0.07515 

39 96666 0.00178 0.00184 81 40760 0.08425 0.08227 

40 96494 0.00201 0.00201 82 37326 0.09323 0.09006 

41 96300 0.00216 0.00220 83 33846 0.10436 0.09859 

    84 30314   

 



Internal Auditing & Risk Management    ________________      Anul IX, Nr.1(33), March 2014 

 

12 

 


